## organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## 2-[4-(4-Methoxyphenyl)-5-(2-pyridyl)-4H-1,2,4-triazol-3-yl]phenol

# Mei-An Zhu, Zhao-Di Liu, Shu-Ping Zhang, Ying Wei and Si-Chang Shao\*

Department of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China

Correspondence e-mail: shaosic@fync.edu.cn

Received 31 May 2009; accepted 11 June 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.110; data-to-parameter ratio = 13.8.

In the title compound,  $C_{20}H_{16}N_4O_2$ , the benzene rings of the 2hydroxyphenyl and 4-methoxylphenyl groups form dihedral angles of 64.02 (8) and 77.39 (7)°, respectively, with the mean plane of the triazole ring. The dihedral angle between the triazole ring mean plane and the pyridyl ring is 9.61 (8)°. In the crystal, intermolecular N-H···O hydrogen bonds link the molecules into zigzag chains propagating in [010].

#### **Related literature**

For the potential antifungal and antibacterial properties of 1,2,4-triazoles, see: Collin, *et al.* (2003); Papakonstantinou-Garoufalias, *et al.* (2002). For the synthesis of the title compound, see: Zhang *et al.* (2004). For related structures, see: Zhang *et al.* (2004); Zhang, Liu, Ma *et al.* (2005); Zhang, Liu, Yang *et al.* (2005); Zhu *et al.* (2000).



#### **Experimental**

Crystal data C<sub>20</sub>H<sub>16</sub>N<sub>4</sub>O<sub>2</sub>

 $M_r = 344.37$ 

Monoclinic,  $P2_1/n$ Z = 4a = 10.0842 (9) Å Mo  $K\alpha$  radiation  $\mu = 0.09 \text{ mm}^{-1}$ b = 10.4903 (9) Å c = 16.7214 (14) Å T = 293 K $0.10 \times 0.10 \times 0.08 \; \text{mm}$  $\beta = 94.658 \ (2)^{\circ}$ V = 1763.1 (3) Å<sup>3</sup> Data collection Bruker SMART CCD area-detector 8997 measured reflections diffractometer 3278 independent reflections

Absorption correction: multi-scan<br/>(SADABS; Sheldrick, 1996)<br/> $T_{\min} = 0.991, T_{\max} = 0.993$ 2734 reflections with  $I > 2\sigma(I)$ <br/> $R_{int} = 0.018$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.038$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $vR(F^2) = 0.110$               | independent and constrained                                |
| S = 1.04                        | refinement                                                 |
| 3278 reflections                | $\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$  |
| 238 parameters                  | $\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$ |

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                           | D-H        | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |  |
|----------------------------------------------------------------------------|------------|-------------------------|--------------|------------------|--|
| $O1-H1O\cdots N1^{i}$                                                      | 0.938 (18) | 1.759 (19)              | 2.6937 (16)  | 174.2 (16)       |  |
| Symmetry code: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$ . |            |                         |              |                  |  |

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Education Office of Anhui Province, People's Republic of China, for research grant No. KJ2009A047Z.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2120).

#### References

- Collin, X., Sauleau, A. & Coulon, J. (2003). Bioorg. Med. Chem. Lett. 13, 2601–2605.
- Papakonstantinou-Garoufalias, S., Pouli, N., Marakos, P. & Chytyroglou-Ladas, A. (2002). Farmaco, 57, 973–977.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Zhang, S.-P., Liu, Z.-D., Ma, J.-L., Yang, S. & Shao, S.-C. (2005). Acta Cryst. E61, m423–m424.
- Zhang, S.-P., Liu, H.-J., Shao, S.-C., Zhang, Y., Shun, D.-G., Yang, S. & Zhu, H.-L. (2004). Acta Cryst. E60, o1113–o1114.
- Zhang, S.-P., Liu, Z.-D., Yang, S., Qiu, X.-Y. & Shao, S.-C. (2005). Acta Cryst. E61, 03108–03109.
- Zhu, D., Zhu, X., Xu, L., Shao, S., Raj, S. S. S., Fun, H.-K. & You, X. (2000). J. Chem. Crystallogr. 30, 429–430.

supplementary materials

Acta Cryst. (2009). E65, o1690 [doi:10.1107/81600536809022223]

### 2-[4-(4-Methoxyphenyl)-5-(2-pyridyl)-4H-1,2,4-triazol-3-yl]phenol

### M.-A. Zhu, Z.-D. Liu, S.-P. Zhang, Y. Wei and S.-C. Shao

#### Comment

Molecules containing a 1,2,4-triazole moiety have elicited considerable interest among medicinal chemists because they display a wide range of antifungal (Collin *et al.*, 2003) and antibacterial (Papakonstantinou-Garoufalias *et al.*, 2002) activities. We have synthesed and reported the crystal structures of various 1,2,4-triazole ligands and their metal complexes (Zhang *et al.*, 2004; Zhang, Liu, Ma *et al.*, 2005; Zhang, Liu, Yang *et al.*, 2005; Zhu *et al.*, 2000). As an extension of our work on the structural characterization of triazole derivatives, we report herein on the crystal structure of the title compound.

In the title compound the pyridyl ring and the benzene rings lie in a propeller arrangement around the central 1,2,4-triazole ring (Fig. 1), thereby minimizing the steric effects among these rings. The benzene rings of the 2-hydroxyphenyl and 4-methoxylphenyl groups are inclined to the mean plane of the triazole ring by 64.02 (8) and 77.39 (7)°, respectively. In contrast the pyridyl ring is inclined to the triazole ring by 9.61 (8)°.

In the crystal structure intermolecular O–H···N hydrogen bonds, involving hydroxyl O1-H1O and a triazole N-atom, N1, link the molecules into zigzag chains propagating in the [010] direction (Fig. 2 and Table 1).

#### **Experimental**

The title compound was synthesized according to a literature method (Zhang *et al.*, 2004). Equivalent amounts of *p*-methoxylphenylphosphazoanilide and *N*-(2-pyridoyl)-*N*'-(2-Hydroxyphenyl)hydrazine were reacted in *N*,*N*'-dimethylaniline for 3 h at 463 K, with stirring. Colourless block-shaped crystals were obtained by slow evaporation of an acetone solution. The crystals were collected and dried in a vacuum desiccator using anhydrous CaCl<sub>2</sub> (yield 52%).

#### Refinement

The hydroxyl H-atom was located in a difference Fourier map and freely refined, O-H = 0.938 (18)Å, with  $U_{iso}(H) = 1.2 U_{eq}(O)$ . The C-bound H atoms were placed in geometrically idealized positions and treated as riding atoms: C—H = 0.93–0.96 Å, with  $U_{iso}(H) = 1.2$  or 1.5 (methyl)  $U_{eq}(C)$ .

#### Figures



Fig. 1. A view of the molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.



Fig. 2. A view along the a axis of the crystal apckinh i nthe title compound. The intermolecular N-H…O hydrogen bonds are shown dashed lines (details are given in Table 1).

## 2-[4-(4-Methoxyphenyl)-5-(2-pyridyl)-4H-1,2,4-triazol-3-yl]phenol

| Crystal | data |
|---------|------|
|---------|------|

| $C_{20}H_{16}N_4O_2$           | $F_{000} = 720$                                       |
|--------------------------------|-------------------------------------------------------|
| $M_r = 344.37$                 | $D_{\rm x} = 1.297 {\rm ~Mg~m^{-3}}$                  |
| Monoclinic, $P2_1/n$           | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: -P 2yn            | Cell parameters from 2.3 reflections                  |
| a = 10.0842 (9)  Å             | $\theta = 15 - 532^{\circ}$                           |
| b = 10.4903 (9)  Å             | $\mu = 0.09 \text{ mm}^{-1}$                          |
| c = 16.7214 (14)  Å            | T = 293  K                                            |
| $\beta = 94.658 \ (2)^{\circ}$ | Block, colourless                                     |
| $V = 1763.1 (3) \text{ Å}^3$   | $0.10\times0.10\times0.08~mm$                         |
| <i>Z</i> = 4                   |                                                       |

### Data collection

| 3278 independent reflections           |
|----------------------------------------|
| 2734 reflections with $I > 2\sigma(I)$ |
| $R_{\rm int} = 0.018$                  |
| $\theta_{\text{max}} = 25.5^{\circ}$   |
| $\theta_{\min} = 2.3^{\circ}$          |
| $h = -12 \rightarrow 9$                |
| $k = -12 \rightarrow 12$               |
| $l = -20 \rightarrow 19$               |
|                                        |

### Refinement

| Refinement on $F^2$             | Secondary atom site location: difference Fourier map                                |
|---------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Hydrogen site location: inferred from neighbouring sites                            |
| $R[F^2 > 2\sigma(F^2)] = 0.038$ | H atoms treated by a mixture of independent and constrained refinement              |
| $wR(F^2) = 0.110$               | $w = 1/[\sigma^2(F_o^2) + (0.0578P)^2 + 0.2618P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.04                 | $(\Delta/\sigma)_{\rm max} = 0.001$                                                 |

3278 reflections

238 parameters

 $\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{min} = -0.13 \text{ e } \text{\AA}^{-3}$ 

Primary atom site location: structure-invariant direct Extinction correction: none

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|     | x            | v            | Z             | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|--------------|---------------|---------------------------|
| 01  | 0.25887 (10) | 0.88801 (10) | 0.27051 (6)   | 0.0540 (3)                |
| H1O | 0.2548 (16)  | 0.8171 (17)  | 0.3044 (10)   | 0.065*                    |
| 02  | 0.57961 (12) | 0.52684 (10) | 0.08768 (7)   | 0.0657 (3)                |
| N3  | 0.30394 (11) | 0.98466 (10) | 0.09726 (6)   | 0.0413 (3)                |
| N1  | 0.26339 (12) | 1.17680 (11) | 0.13995 (7)   | 0.0495 (3)                |
| N2  | 0.20046 (12) | 1.16372 (11) | 0.06409 (7)   | 0.0502 (3)                |
| C10 | 0.07912 (15) | 1.07145 (17) | -0.08501 (9)  | 0.0592 (4)                |
| H10 | 0.0505       | 1.1495       | -0.0664       | 0.071*                    |
| C1  | 0.32455 (13) | 1.06948 (12) | 0.15894 (8)   | 0.0430 (3)                |
| C2  | 0.22553 (13) | 1.04857 (13) | 0.03920 (8)   | 0.0430 (3)                |
| C3  | 0.40733 (14) | 1.04578 (12) | 0.23412 (8)   | 0.0459 (3)                |
| C4  | 0.37258 (14) | 0.95349 (12) | 0.28844 (8)   | 0.0448 (3)                |
| C5  | 0.45291 (16) | 0.93499 (15) | 0.35907 (10)  | 0.0595 (4)                |
| Н5  | 0.4300       | 0.8741       | 0.3959        | 0.071*                    |
| C6  | 0.5664 (2)   | 1.00676 (19) | 0.37443 (12)  | 0.0780 (6)                |
| H6  | 0.6202       | 0.9934       | 0.4215        | 0.094*                    |
| C7  | 0.6009 (2)   | 1.0981 (2)   | 0.32077 (13)  | 0.0868 (6)                |
| H7  | 0.6778       | 1.1462       | 0.3315        | 0.104*                    |
| C8  | 0.52135 (18) | 1.11758 (16) | 0.25158 (11)  | 0.0686 (5)                |
| H8  | 0.5442       | 1.1800       | 0.2157        | 0.082*                    |
| C9  | 0.17333 (13) | 1.00019 (14) | -0.03971 (8)  | 0.0450 (3)                |
| C11 | 0.02873 (17) | 1.0247 (2)   | -0.15797 (10) | 0.0722 (5)                |
| H11 | -0.0347      | 1.0707       | -0.1895       | 0.087*                    |
| C12 | 0.07285 (19) | 0.9101 (2)   | -0.18364 (10) | 0.0733 (5)                |
| H12 | 0.0396       | 0.8760       | -0.2326       | 0.088*                    |
| C13 | 0.1670 (2)   | 0.84634 (19) | -0.13575 (11) | 0.0738 (5)                |
| H13 | 0.1972       | 0.7686       | -0.1539       | 0.089*                    |
| N4  | 0.21866 (15) | 0.88858 (13) | -0.06456 (8)  | 0.0636 (4)                |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

# supplementary materials

| C14  | 0.37019 (13) | 0.86290 (12) | 0.09457 (8)  | 0.0405 (3) |
|------|--------------|--------------|--------------|------------|
| C15  | 0.50296 (14) | 0.86186 (13) | 0.08103 (9)  | 0.0490 (3) |
| H15  | 0.5472       | 0.9380       | 0.0730       | 0.059*     |
| C16  | 0.57011 (15) | 0.74766 (14) | 0.07936 (9)  | 0.0537 (4) |
| H16  | 0.6597       | 0.7466       | 0.0697       | 0.064*     |
| C17  | 0.50458 (15) | 0.63460 (13) | 0.09194 (8)  | 0.0473 (3) |
| C18  | 0.37133 (16) | 0.63626 (13) | 0.10599 (9)  | 0.0517 (4) |
| H18  | 0.3269       | 0.5604       | 0.1145       | 0.062*     |
| C19  | 0.30437 (14) | 0.75134 (13) | 0.10732 (9)  | 0.0487 (3) |
| H19  | 0.2148       | 0.7530       | 0.1169       | 0.058*     |
| C20  | 0.5210 (2)   | 0.40928 (15) | 0.10653 (11) | 0.0757 (5) |
| H20A | 0.5837       | 0.3416       | 0.1011       | 0.114*     |
| H20B | 0.4433       | 0.3947       | 0.0706       | 0.114*     |
| H20C | 0.4962       | 0.4117       | 0.1607       | 0.114*     |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$    |
|-----|-------------|-------------|-------------|--------------|--------------|-------------|
| 01  | 0.0524 (6)  | 0.0530 (6)  | 0.0546 (6)  | -0.0087 (5)  | -0.0074 (5)  | 0.0118 (5)  |
| 02  | 0.0727 (7)  | 0.0476 (6)  | 0.0768 (8)  | 0.0185 (5)   | 0.0054 (6)   | 0.0077 (5)  |
| N3  | 0.0447 (6)  | 0.0357 (6)  | 0.0428 (6)  | 0.0005 (5)   | -0.0015 (5)  | 0.0027 (5)  |
| N1  | 0.0594 (7)  | 0.0384 (6)  | 0.0495 (7)  | 0.0038 (5)   | -0.0027 (5)  | 0.0024 (5)  |
| N2  | 0.0566 (7)  | 0.0435 (7)  | 0.0494 (7)  | 0.0054 (5)   | -0.0018 (5)  | 0.0059 (5)  |
| C10 | 0.0550 (9)  | 0.0737 (11) | 0.0482 (9)  | 0.0099 (8)   | -0.0007 (7)  | 0.0109 (7)  |
| C1  | 0.0468 (7)  | 0.0357 (7)  | 0.0459 (7)  | -0.0020 (6)  | 0.0001 (6)   | 0.0013 (6)  |
| C2  | 0.0428 (7)  | 0.0424 (7)  | 0.0434 (7)  | 0.0009 (6)   | 0.0010 (6)   | 0.0079 (6)  |
| C3  | 0.0521 (8)  | 0.0375 (7)  | 0.0467 (8)  | -0.0003 (6)  | -0.0047 (6)  | -0.0016 (6) |
| C4  | 0.0483 (7)  | 0.0374 (7)  | 0.0475 (8)  | 0.0017 (6)   | -0.0040 (6)  | -0.0023 (6) |
| C5  | 0.0697 (10) | 0.0540 (9)  | 0.0518 (9)  | -0.0031 (8)  | -0.0131 (7)  | 0.0063 (7)  |
| C6  | 0.0815 (12) | 0.0758 (12) | 0.0699 (12) | -0.0116 (10) | -0.0351 (10) | 0.0067 (9)  |
| C7  | 0.0815 (13) | 0.0816 (13) | 0.0905 (14) | -0.0333 (11) | -0.0346 (11) | 0.0112 (11) |
| C8  | 0.0723 (11) | 0.0572 (10) | 0.0732 (11) | -0.0205 (8)  | -0.0137 (9)  | 0.0104 (8)  |
| C9  | 0.0423 (7)  | 0.0515 (8)  | 0.0412 (7)  | -0.0030 (6)  | 0.0028 (6)   | 0.0075 (6)  |
| C11 | 0.0587 (10) | 0.1077 (15) | 0.0486 (9)  | 0.0108 (10)  | -0.0058 (7)  | 0.0141 (9)  |
| C12 | 0.0701 (11) | 0.1032 (15) | 0.0449 (9)  | -0.0093 (11) | -0.0068 (8)  | -0.0029 (9) |
| C13 | 0.0857 (12) | 0.0764 (12) | 0.0565 (10) | 0.0041 (10)  | -0.0109 (9)  | -0.0122 (9) |
| N4  | 0.0733 (9)  | 0.0618 (8)  | 0.0530 (8)  | 0.0076 (7)   | -0.0120 (6)  | -0.0052 (6) |
| C14 | 0.0457 (7)  | 0.0363 (7)  | 0.0383 (7)  | 0.0027 (5)   | -0.0030 (5)  | 0.0008 (5)  |
| C15 | 0.0461 (8)  | 0.0426 (7)  | 0.0572 (9)  | -0.0031 (6)  | -0.0017 (6)  | 0.0079 (6)  |
| C16 | 0.0435 (8)  | 0.0528 (9)  | 0.0644 (10) | 0.0047 (6)   | 0.0018 (7)   | 0.0079 (7)  |
| C17 | 0.0565 (8)  | 0.0433 (8)  | 0.0413 (7)  | 0.0106 (6)   | -0.0003 (6)  | 0.0035 (6)  |
| C18 | 0.0645 (9)  | 0.0361 (7)  | 0.0550 (9)  | -0.0045 (6)  | 0.0089 (7)   | 0.0023 (6)  |
| C19 | 0.0475 (8)  | 0.0430 (8)  | 0.0561 (9)  | -0.0011 (6)  | 0.0077 (6)   | -0.0005 (6) |
| C20 | 0.1210 (16) | 0.0431 (9)  | 0.0652 (11) | 0.0185 (9)   | 0.0206 (10)  | 0.0094 (8)  |

Geometric parameters (Å, °)

| O1—C4  | 1.3494 (17) | С7—Н7 | 0.9300 |
|--------|-------------|-------|--------|
| 01—H10 | 0.938 (18)  | C8—H8 | 0.9300 |

| O2—C17      | 1.3654 (16) | C9—N4       | 1.3354 (19) |
|-------------|-------------|-------------|-------------|
| O2—C20      | 1.414 (2)   | C11—C12     | 1.364 (3)   |
| N3—C1       | 1.3653 (17) | C11—H11     | 0.9300      |
| N3—C2       | 1.3757 (16) | C12—C13     | 1.366 (3)   |
| N3—C14      | 1.4439 (16) | C12—H12     | 0.9300      |
| N1—C1       | 1.3103 (17) | C13—N4      | 1.335 (2)   |
| N1—N2       | 1.3783 (16) | С13—Н13     | 0.9300      |
| N2—C2       | 1.3089 (18) | C14—C19     | 1.3706 (18) |
| C10—C11     | 1.373 (2)   | C14—C15     | 1.3759 (19) |
| С10—С9      | 1.385 (2)   | C15—C16     | 1.378 (2)   |
| C10—H10     | 0.9300      | C15—H15     | 0.9300      |
| C1—C3       | 1.4725 (19) | C16—C17     | 1.382 (2)   |
| С2—С9       | 1.4708 (19) | C16—H16     | 0.9300      |
| C3—C8       | 1.386 (2)   | C17—C18     | 1.383 (2)   |
| C3—C4       | 1.3918 (19) | C18—C19     | 1.3843 (19) |
| C4—C5       | 1.390 (2)   | C18—H18     | 0.9300      |
| C5—C6       | 1.376 (2)   | С19—Н19     | 0.9300      |
| С5—Н5       | 0.9300      | C20—H20A    | 0.9600      |
| C6—C7       | 1.377 (3)   | C20—H20B    | 0.9600      |
| С6—Н6       | 0.9300      | С20—Н20С    | 0.9600      |
| С7—С8       | 1.369 (2)   |             |             |
| C4—O1—H1O   | 110.4 (10)  | C10—C9—C2   | 118.95 (14) |
| C17—O2—C20  | 117.84 (13) | C12—C11—C10 | 119.19 (16) |
| C1—N3—C2    | 105.01 (11) | C12—C11—H11 | 120.4       |
| C1—N3—C14   | 123.90 (11) | C10-C11-H11 | 120.4       |
| C2—N3—C14   | 130.54 (11) | C11—C12—C13 | 118.43 (17) |
| C1—N1—N2    | 108.06 (11) | C11—C12—H12 | 120.8       |
| C2—N2—N1    | 107.35 (11) | С13—С12—Н12 | 120.8       |
| C11—C10—C9  | 118.76 (17) | N4—C13—C12  | 124.21 (18) |
| C11—C10—H10 | 120.6       | N4—C13—H13  | 117.9       |
| C9—C10—H10  | 120.6       | C12—C13—H13 | 117.9       |
| N1—C1—N3    | 109.70 (12) | C9—N4—C13   | 116.73 (14) |
| N1—C1—C3    | 125.10 (12) | C19—C14—C15 | 120.59 (12) |
| N3—C1—C3    | 125.16 (12) | C19—C14—N3  | 121.29 (12) |
| N2—C2—N3    | 109.89 (12) | C15—C14—N3  | 118.10 (11) |
| N2—C2—C9    | 122.65 (12) | C14—C15—C16 | 119.78 (13) |
| N3—C2—C9    | 127.46 (12) | C14—C15—H15 | 120.1       |
| C8—C3—C4    | 119.28 (13) | С16—С15—Н15 | 120.1       |
| C8—C3—C1    | 119.43 (13) | C15—C16—C17 | 120.08 (13) |
| C4—C3—C1    | 121.29 (12) | C15—C16—H16 | 120.0       |
| O1—C4—C5    | 122.93 (13) | С17—С16—Н16 | 120.0       |
| O1—C4—C3    | 117.61 (12) | O2—C17—C16  | 115.38 (13) |
| C5—C4—C3    | 119.43 (13) | O2—C17—C18  | 124.72 (13) |
| C6—C5—C4    | 120.02 (15) | C16—C17—C18 | 119.89 (12) |
| С6—С5—Н5    | 120.0       | C17—C18—C19 | 119.72 (13) |
| C4—C5—H5    | 120.0       | C17—C18—H18 | 120.1       |
| C5—C6—C7    | 120.64 (16) | C19—C18—H18 | 120.1       |
| С5—С6—Н6    | 119.7       | C14—C19—C18 | 119.94 (13) |
| С7—С6—Н6    | 119.7       | С14—С19—Н19 | 120.0       |

# supplementary materials

| C8—C7—C6  | 119.54 (16) | C18—C19—H19   | 120.0 |
|-----------|-------------|---------------|-------|
| С8—С7—Н7  | 120.2       | O2-C20-H20A   | 109.5 |
| С6—С7—Н7  | 120.2       | O2—C20—H20B   | 109.5 |
| C7—C8—C3  | 121.08 (16) | H20A-C20-H20B | 109.5 |
| С7—С8—Н8  | 119.5       | O2—C20—H20C   | 109.5 |
| С3—С8—Н8  | 119.5       | H20A-C20-H20C | 109.5 |
| N4—C9—C10 | 122.68 (14) | H20B-C20-H20C | 109.5 |
| N4—C9—C2  | 118.37 (12) |               |       |
|           |             |               |       |

*Hydrogen-bond geometry (Å, °)* 

| D—H···A                                             | D—H        | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|-----------------------------------------------------|------------|--------------|--------------|------------|
| O1—H1O····N1 <sup>i</sup>                           | 0.938 (18) | 1.759 (19)   | 2.6937 (16)  | 174.2 (16) |
| Symmetry codes: (i) $-x+1/2$ , $y-1/2$ , $-z+1/2$ . |            |              |              |            |





